Тепловой насос для отопления дома
Содержание:
- Основные разновидности, их принципы работы
- Виды тепловых насосов
- Принцип действия тепловых насосов
- Что такое тепловой насос и как он работает?
- Что такое тепловой насос для отопления частного дома? Как работает?
- Хладагент
- Методика расчета тепловых насосов
- Принцип кондиционирования (активного и пассивного)
- Теплонасос и его эффективность
Основные разновидности, их принципы работы
Все тепловые насосы отличаются друг от друга по источнику энергии. Основные классы устройств: грунт-вода, вода-вода, воздух-вода и воздух-воздух.
Первое слово указывает на источник тепла, а второе — означает то, во что оно превращается в устройстве.
Например, в случае прибора грунт-вода тепло извлекается из земли, а потом оно преобразуется в горячую воду, которая используется как нагреватель в системе отопления. Ниже мы рассмотрим разновидности тепловых насосов для отопления более подробно.
Грунт-вода
Установки типа грунт-вода добывают тепло прямо из земли с помощью специальных турбин или коллекторов. В качестве источника в данном случае используется земля, которая нагревает фреон. Он нагревает воду, которая находится в баке-конденсаторе. При этом фреон охлаждается и поступает обратно на вход насоса, а разогретая вода используется в качестве теплоносителя в основной системе отопления.
Цикл нагрева жидкости продолжается до тех пор, пока насос получает электричество из сети. Самым затратным, с экономической точки зрения, является метод грунт-вода поскольку для монтажа турбин и коллекторов придётся бурить глубокие скважины или менять расположение грунта на большом участке земли.
Вода-вода
По своим техническим характеристикам насосы типа вода-вода очень похожи на устройства класса грунт-вода с тем лишь отличием, что в качестве первичного источника тепла в данном случае используется не земля, а вода. В качестве источника могут использоваться как подземные воды, так и из различных водоёмов.
Фото 2. Монтаж конструкции для теплового насоса типа вода-вода: в водоём погружаются специальные трубы.
Устройства класса вода-вода значительно дешевле насосов типа грунт-вода, поскольку для их установки не нужно бурить глубокие скважины.
Справка. Для работы водяного насоса достаточно погрузить несколько труб в ближайший водоём, поэтому для его работы не нужно бурить скважины.
Воздух-вода
Установки класса воздух-вода получают тепло прямо из окружающей среды. Такие приборы не нуждаются в крупном внешнем коллекторе для сбора тепла, а для нагрева фреона используется обыкновенный уличный воздух. После нагревания фреон отдаёт тепло воде, после чего горячая вода поступает в отопительную систему через трубы. Устройства данного типа довольно дешёвые, поскольку для работы насоса не нужен дорогостоящий коллектор.
Воздушный
Установка класса воздух-воздух тоже получает тепло прямо из окружающей среды, а для её работы также не требуется внешний коллектор. После контакта тёплого воздуха происходит нагрев фреона, затем фреон нагревает воздух в насосе. Потом этот воздух выбрасывается в помещение, что приводит к локальному повышению температуры. Устройства данного типа также являются довольно дешёвыми, поскольку для их работы не требуется установка дорогостоящего коллектора.
Фото 3. Принцип работы теплового насоса воздух-воздух. В отопительные радиаторы поступает теплоноситель с температурой 35 градусов.
Виды тепловых насосов
- воздух-воздух;
- воздух-вода;
- земля-вода;
- вода-вода.
Первое слово в этих сочетаниях означает внешнюю среду, от которой забирается энергия. Второе слово это вид теплоносителя, с помощью которого обеспечивается обогрев помещений.
Использование геотермальных и гидротермальных установок менее выгодно. Дело в том, что получение тепловой энергии от грунта или воды в водоемах требует увеличения затрат, на бурение скважины, обеспечение защиты опускаемой части системы от воздействия коррозии и заиливания. Отбор тепла из окружающего воздуха делает работу тепловых насосов более выгодной и обоснованной экономически, за счет быстрой окупаемости капитальных затрат. При этом срок эксплуатации оборудования в несколько раз больше.
Принцип действия тепловых насосов
Принцип работы устройства для обогрева дома основан на том, что вещество (холодильный агент) может отдавать тепловую энергию либо забирать ее в процессе смены состояния. Эта идея заложена в основу функционирования холодильника (из-за этого задняя стенка прибора горячая).
Термонасос для отопления функционирует следующим образом:
- Поступающий агент охлаждается на 5 градусов в испарительном отделе на основании энергии от носителя тепла.
- Охлажденный агент поступает в компрессор, который в результате работы сжимает и нагревает его.
- Уже горячий газ попадает в отсек для теплообмена, в котором он отдает собственное тепло отопительной системе.
- Сконденсированный хладагент возвращается к старту цикла.
Устройство
Тепловой насос для отопления дома состоит из нескольких основных контурных элементов:
- контур с теплоносителем, который перемещает энергию от теплоисточника;
- контур с фреоном, который периодически испаряется, забирая тепловую энергию с первого контура, и снова оседает конденсатом, передавая тепло третьему;
- контур, где циркулирует жидкость, являющаяся переносчиком тепла для отопления.
Эксплуатация термо насоса для отопления дома является выгодной с финансовой точки зрения. Причина этого в том, что устройство не требует высокой мощности (соответственно, расход электричества не больше, чем у стандартного бытового прибора), однако при этом производится в 4 раза больше тепла по сравнению с потребляемой электроэнергии.
Также не требуется создавать отдельную линию проводки для подключения насоса.
Плюсы и минусы
Перед принятием решения, использовать тепловой насос или нет, следует ознакомиться с достоинствами и недостатками его работы. К главным плюсам теплового насоса относится:
- небольшой расход электричества на отопление дома;
- отсутствие необходимости регулярного осмотра и технического обслуживания, что делает затраты на эксплуатацию теплового насоса для отопления минимальными;
- допускается монтаж в любой местности. Насос может работать с такими источниками тепловой энергии, как воздух, почва и вода. Поэтому появляется возможность его установки практически в любое место, где планируется строительство дома. А в условиях отдаленности от газовой магистрали, устройство является самым подходящим методом обогрева. Даже если отсутствует электричество, функционирование компрессора можно обеспечить при помощи привода на основе бензина или дизеля;
- отопление дома осуществляется в автоматическом режиме. Не требуется добавлять топливо или проводить иные манипуляции, как, например, в случае с котельным оборудованием;
- отсутствие загрязнения окружающей среды вредными газами и веществами. Все применяемые холодильные агенты полностью безопасны и экологически пригодны;
- пожаробезопасность. Жителям дома никогда не будет угрожать взрыв или повреждение вследствие перегрева теплового насоса;
- возможность эксплуатации даже при условиях холодной зимы (до -15 градусов);
- качественный тепловой насос для отопления дома может служить до 50 лет. Замена компрессора требуется лишь раз в 20 лет.
Тепловой Насос ВЫГОДЕН или НЕТ?.. Кому не Стоит Покупать Тепловой Насос? (РАЗБОР)
Watch this video on YouTube
Плюсы и минусы
Как и любое устройство, тепловые насосы имеют определенные недостатки:
- Если температура окружающей среды опускается ниже 15 градусов, то насос работать не сможет. В таком случае потребуется монтаж второго теплоисточника. При очень низких температурных значениях включается котел, генератор или электрический обогреватель;
- Высокая стоимость оборудования. Оно будет стоить примерно 350 000-700 000 рублей, еще такую же сумму придется потратить на создание геотермальной станции и установку устройства. Дополнительные монтажные работы не требуются только для теплового насоса, использующего воздух в качестве теплового источника;
- Лучше всего устанавливать тепловой насос в сочетании с теплым полом или вентиляторными конвекторами, однако в старых зданиях потребуется перепланировка и возможно даже капитальный ремонт, что повлечет дополнительные затраты времени и средств. Если частный дом строится с нуля, такая проблема отсутствует;
- При работе теплового насоса температура грунта, расположенного вокруг трубопровода с теплоносителем, снижается. Это становится причиной гибели некоторых микроорганизмов, участвующих в функционировании окружающей среды. Таким образом, некоторый ущерб экологии все же наносится, однако он существенно меньше урона от газо- или нефтедобычи.
Что такое тепловой насос и как он работает?
Под термином тепловой насос понимается набор определенного оборудования. Основной функцией этого оборудования является сбор тепловой энергии и ее транспортировка к потребителю. Источником такой энергии может стать любое тело или среда, обладающая температурой от +1º и более градусов.
В окружающей нас среде источников низкотемпературного тепла более чем достаточно. Это промышленные отходы предприятий, тепловых и атомных электростанций, канализационные стоки и пр. Для работы тепловых насосов в сфере отопления дома нужны три самостоятельно восстанавливающихся природных источника – воздух, вода, земля.
Тепловые насосы “черпают” энергию из процессов, регулярно происходящих в окружающей среде. Течение процессов никогда не прекращается, потому источники признаны неисчерпаемыми по человеческим критериям
Три перечисленных потенциальных поставщика энергии напрямую связаны с энергией солнца, которое путем нагревания приводит в движение воздух с ветром и сообщает тепловую энергию земле. Именно выбор источника является основными критерием, согласно которому классифицируют тепловые насосные системы.
Принцип действия тепловых насосов базируется на способности тел или сред передавать тепловую энергию другому телу или среде. Получатели и поставщики энергии в тепловых насосных системах работают обычно в паре.
Так различают следующие виды тепловых насосов:
- Воздух – вода.
- Земля – вода.
- Вода – воздух.
- Вода – вода.
- Земля – воздух.
- Вода – вода
- Воздух – воздух.
При этом первое слово определяет тип среды, у которой система отбирает низкотемпературное тепло. Второе указывает на вид носителя, которому и передается эта тепловая энергия. Так, в тепловых насосах вода – вода, тепло отбирается у водной среды и в качестве теплоносителя используется жидкость.
Тепловые насосы по конструктивному типу являются парокомпрессионными установками. Они извлекают тепло из природных источников, обрабатывают и транспортируют его к потребителям (+)
Современные тепловые насосы используют три основных источника тепловой энергии. Это – грунт, вода и воздушная среда. Самый простой из этих вариантов – воздушный тепловой насос. Популярность таких систем связана с их довольно несложной конструкцией и простотой монтажа.
Однако несмотря на такую популярность, эти разновидности имеют довольно низкую производительность. К тому же КПД нестабилен и зависим сезонных колебаний температурного режима.
С понижением температуры их производительность значительно падает. Такие варианты тепловых насосов можно рассматривать как дополнение к имеющемуся основному источнику тепловой энергии.
Варианты оборудования, использующего тепло грунта, считаются более эффективными. Грунт получает и аккумулирует тепловую энергию не только от Солнца, он постоянно подогревается за счет энергии земного ядра.
То есть грунт является своеобразным тепловым аккумулятором, мощность которого, практически, не ограничена. Причем температура грунта, особенно на некоторой глубине, постоянна и колеблется в незначительных пределах.
Сфера применения энергии, вырабатываемой тепловыми насосами:
Постоянство температуры источника является важным фактором стабильной и эффективной работы данного вида энергетического оборудования. Аналогичными характеристиками обладают системы, в которых водная среда является основным источником тепловой энергии. Коллектор таких насосов располагают либо в скважине, где он оказывается в водоносном слое, либо в водоеме.
Среднегодовая температура таких источников, как грунт и вода, варьируется от +7º до + 12º С. Такой температуры вполне достаточно для того, чтобы обеспечить эффективную работу системы.
Наиболее эффективными считаются тепловые насосы, извлекающие тепловую энергию из источников со стабильными температурными показателями, т.е. из воды и грунта
Что такое тепловой насос для отопления частного дома? Как работает?
Специальное устройство, которое способно извлекать тепло из окружающей среды называется тепловой насос.
Применяются такие приборы в качестве основного или дополнительного метода обогрева помещений. Некоторые устройства также работают на пассивное охлаждение здания — при этом насос применяется как для летнего охлаждения, так и для зимнего обогрева.
В качестве топлива используется энергия окружающей среды. Такой обогреватель извлекает тепло из воздуха, воды, грунтовых вод и так далее, поэтому это устройство относят к классу возобновляемых источников энергии.
Важно! Для работы таких насосов требуется подключение к электросети. В состав всех тепловых аппаратов входит испаритель, компрессор, конденсатор и расширительный клапан
В зависимости от источника тепла различают водяные, воздушные и другие устройства
Принцип действия очень похож на принцип работы холодильника (только холодильник выбрасывает горячий воздух, а насос поглощает тепло)
В зависимости от источника тепла различают водяные, воздушные и другие устройства. Принцип действия очень похож на принцип работы холодильника (только холодильник выбрасывает горячий воздух, а насос поглощает тепло)
В состав всех тепловых аппаратов входит испаритель, компрессор, конденсатор и расширительный клапан. В зависимости от источника тепла различают водяные, воздушные и другие устройства. Принцип действия очень похож на принцип работы холодильника (только холодильник выбрасывает горячий воздух, а насос поглощает тепло).
Большинство приспособлений работают как при положительных, так и при отрицательных температурах, однако КПД устройства напрямую зависит от внешних условий (т. е. чем выше температура окружающей среды, тем мощнее будет устройство). В общем случае прибор работает следующий образом:
- Тепловой насос вступает в контакт с окружающими условиями. Обычно аппарат извлекает тепло из земли, воздуха или воды (в зависимости от типа устройства).
- Внутри прибора установлен специальный испаритель, который заполнен хладагентом.
- При контакте с внешней средой хладагент закипает и испаряется.
- После этого хладагент в виде пара поступает в компрессор.
- Там он сжимается — благодаря этому серьёзно повышается его температура.
- После этого разогретый газ поступает в систему отопления, что приводит к нагреванию основного теплоносителя, который и используется для отопления помещений.
- Хладагент понемногу охлаждается. В конце он превращается обратно в жидкость.
- Потом жидкий хладагент поступает в специальный клапан, который серьёзно понижает его температуру.
- В конце хладагент вновь попадает в испаритель, после чего цикл нагрева повторяется.
Фото 1. Принцип работы теплового насоса типа грунт-вода. Синим цветом показан холодный теплоноситель, красным — горячий.
Преимущества:
- Экологичность. Такие устройства относятся к возобновляемым источникам энергии, которые не загрязняют атмосферу своими выбросами (тогда как в случае использования природного газа образуются вредные парниковые испарения, а для производства электроэнергии часто применяется сжигание угля, из-за чего также загрязняется воздух).
- Хорошая альтернатива газу. Тепловой насос идеально подойдёт для отопления помещений в случаях, когда использование газа затруднительно по тем или иным причинам (например, когда дом находится вдали ото всех основных инженерных сетей). Насос также выгодно отличается от газового отопления тем, что для установки такого прибора не требуется получать государственное разрешение (но при бурении глубокой скважины его все же придётся получить).
- Недорогой дополнительный источник тепла. Насос идеально подойдёт в качестве дешёвого вспомогательного источника питания (оптимальный вариант — применение газа зимой и насоса — весной и осенью).
Недостатки:
- Тепловые ограничения в случае использования водяных насосов. Все тепловые аппараты хорошо функционируют при положительных температурах, тогда как в случае работы при отрицательных температурах многие насосы перестают работать. В основном это связано с тем, что при этом вода замерзает, что делает невозможным её применение как источника тепла.
- Могут появиться проблемы с устройствами, которые в качестве тепла используют воду. Если для нагрева применяется вода, то потребуется найти её стабильный источник. Чаще всего для этого следует пробурить скважину, благодаря чему расходы на монтаж устройства могут возрасти.
Внимание! Насосы обычно стоят в 5—10 раз дороже газового котла, следовательно использование таких приборов в целях экономии в ряде случаев может быть нецелесообразно (чтобы насос окупился, потребуется подождать несколько лет)
Хладагент
В ТН очень редко применяется фреон марки R22, который отличается низкой ценой и рабочим давлением, а также однородным составом (облегчает дозаправку системы при утечках). Недостаток – опасность для озонового слоя.
Менее токсичный хладагент марки R134A при аналогичной однородности более прихотлив к условиям эксплуатации, в частности, требует использования полиэфирных масел.
Хладагенты марок R407C и R410A – самые безопасные для окружающей среды. Но из-за высокого рабочего давления такие фреоны применяются в дорогой технике, да и сами обходятся недешево. R410A выгодно отличается от R407C однородностью состава. А вот R407C при утечке заменяется полностью.
Методика расчета тепловых насосов
Безусловно, процесс выбора и расчет теплового насоса является весьма сложной в техническом отношении операцией и зависит от индивидуальных особенностей объекта, но ориентировочно он может быть сведен к следующим этапам:
Определяются теплопотери через ограждающие конструкции здания (стены, перекрытия, окна, двери). Сделать это можно, применив следующее соотношение:
Qок = S*( tвн – tнар)* (1 + Σ β ) *n / Rт(Вт)где
tнар – наружная температура воздуха (°С);
tвн – внутренняя температура воздуха (°С);
S – суммарная площадь всех ограждающих конструкций (м2);
n – коэффициент, указывающийвлияние окружающей среды на характеристики объекта. Для помещений, напрямую контактирующих через перекрытия с наружной средой n=1; для объектов, имеющих чердачные перекрытия n=0,9; если же объект размещен над подвальным помещением n = 0,75;
β – коэффициент добавочных теплопотерь, который зависит от типа строения и его географического расположенияβ может варьироваться от 0,05 до 0,27;
Rт – теплосопротивление, определяется по следующему выражению:
Rт = 1/ αвнутр + Σ ( δі / λі ) + 1/ αнар (м2*°С / Вт), где:
δі / λі – расчетный показатель теплопроводности применяемых при строительстве материалов.
αнар– коэффициент теплового рассеивания наружных поверхностей ограждающих конструкций(Вт/ м2*оС);
αвнутр– коэффициент теплового поглощения внутренних поверхностей ограждающих конструкций(Вт/ м2*оС);
— Рассчитываются суммарные теплопотери сооружения по формуле:
Qт.пот = Qок + Qи – Qбп , где:
Qи — затраты энергии на подогрев воздуха поступающего к помещению через естественные неплотности;
Qбп -выделения тепла за счет функционирования бытовых приборов и деятельности людей.
2. На основании полученных данных рассчитывается годичное потребление тепловой энергии для каждого индивидуального объекта:
Qгод = 24*0.63*Qт. пот.*(( d*( tвн — tнар.ср.)/ ( tвн — tнар.))(кВт/час за год.) где:
tвн – рекомендуемая температура воздушной среды внутри помещения;
tнар – наружная температура воздуха;
tнар.ср – среднеарифметическое значение температуры наружного воздуха за весь отопительный сезон;
d – число дней отопительного периода.
3. Для полного анализа потребуется рассчитать и уровень тепловой мощности необходимой для разогрева воды:
Qгв = V * 17(кВт/час за год.) где:
V –объем каждодневного нагрева воды до 50 °С.
Тогда суммарный расход тепловой энергии определится по формуле:
Q = Qгв + Qгод (кВт/час за год.)
Принимая во внимание полученные данные, подобрать наиболее подходящий тепловой насос для отопления и горячего водоснабжения не составит большого труда. Причем расчетная мощность определится как
Qтн=1,1*Q, где:
Qтн=1,1*Q, где:
1,1 – корректирующий коэффициент, указывающий возможность увеличения нагрузки на тепловой насос в период возникновения критических температур.
Выполнив расчет тепловых насосов можно подобрать наиболее подходящий тепловой насос, способный обеспечить требуемые параметры микроклимата в помещениях с любыми техническими характеристиками. А учитывая возможность интеграции указанной системы с климатической установкой теплый пол можно отметить, не только ее функциональность, но и высокую эстетическую стоимость.
Читать еще:
О том как правильно рассчитать кол-во и глубину скважин для ТН можно узнать из следующего видео:
Если Вам понравился материал буду благодарен, если порекомендуете его друзьям или оставите полезный комментарий.
Принцип кондиционирования (активного и пассивного)
В зимнее время тепловой насос переносит из окружающей среды тепло, которое затем используется в системе отопления. Летом, наоборот, «холод» из скважины (7-9°C) переносится в помещения дома. Принцип работы системы примерно такой же, только вместо радиаторов используются фанкойлы. При пассивном охлаждении теплоноситель просто циркулирует между фанкойлами и скважиной, т.е. холод из скважины напрямую поступает в систему кондиционирования — компрессор не работает). Если пассивного охлаждения недостаточно, включается компрессор теплового насоса, который дополнительно охлаждает теплоноситель.
Теплонасос и его эффективность
Коэффициент мощности насоса означает отношение обогревательной мощности к потребляемой, проще говоря – сколько киловатт тепловой мощности приходится на выходе на каждый потребленный киловатт электроэнергии. К примеру, у обычно электрического обогревателя данный коэффициент равен около единицы. А для кондиционеров и тепловых насосов он начинается от 3,0 и может достигать 5,0, и даже больше. На данный показатель также оказывает влияние и теплопроводный контур.
Например, воздушный контур обойдется намного дешевле, однако, его использование в бытовых условиях может доставлять некоторый дискомфорт. Это происходит потому, что вентилятор, гоняющий воздух, будет разносить по помещениям и собственный шум, а также в зимний период прогревание воздуха занимает более длительное время. Таким образом, если жилое помещение находится в регионе, где зимой присутствуют сильные заморозки, то имеет смысл устанавливать бивалентную систему отопления (в ней будет использоваться сразу же два источника тепла). Такая система будет самостоятельно контролировать эффективность нагрева, например, если температура достигла определенного уровня и выше ее поднять посредством первого источника не получается, то автоматически подключается дополнительный источник тепла.
А вот на земляном контуре таких проблем, как правило, не возникает, ибо температура земли ниже уровня промерзания не падает менее 0 градусов по Цельсию. На глубине от 3-4 и до 40-50 метров она находится на уровне среднегодовой температуры воздуха, характерной для данной местности. А на глубине еще ниже, она даже начинает повышаться. Да и работает грунтовой теплообменник совершено бесшумно.
В то же время, практика показывает, что отопительный грунтовой комплекс может окупиться примерно лет за 20. И это только учитывая текущие цены на электроэнергию. Соответственно, в будущем цены на электричество будут продолжать расти, а срок окупаемости сокращаться. При этом, стоит помнить, что обычно производители заявляют минимальный срок службы теплового насоса в 20 лет, а на деле он может работать и все 100. Поэтому, его приобретение действительно может быть экономически оправдано.