Защитное зануление электроустановок
Содержание:
- Разберем ситуацию со схемами
- Типовые методики расчета
- Как действует зануление
- Устройство защитных токовых отводов при работе с трехфазным электрическим оборудованием
- Заземление в квартире
- Что лучше — заземление или зануление
- Заземление
- Как сделать заземление в частном доме своими руками 220В
- Зануление
- Требования, контроль, проверка
- Особенности и принцип действия зануления
- Что надёжнее
- Заземление
- В чем разница между занулением и заземлением
Разберем ситуацию со схемами
С точки зрения протекания электрического тока, отличия между заземлением от занулением нет. Нулевой провод в любом случае имеет электрический контакт с физической землей.
Соответственно, при замыкании фазы на корпус, произойдет то самое короткое замыкание, и сработает отключение защитного автомата. Разумеется, (при условии правильного подключения: розетка должна иметь третий земляной контакт, как и электроприбор. По этой причине, электрики, нарушая требования Правил устройства электроустановок, часто разводят земляную шину от нулевого контакта вводного щитка.
Представим ситуацию, когда нулевой провод по какой-то причине разорван:
- потеря контакта по причине коррозии (в старых многоэтажках это рабочая ситуация);
- механический разрыв кабеля вследствие ремонтных работ с нарушениями технологии (к сожалению, тоже не редкость);
- несанкционированное вмешательство доморощенного «электрика»;
- авария на подстанции (возможно отключение только нулевой шины).
На схеме это выглядит следующим образом:
При организации защитного зануления, электрическая цепь между физической «землей» и контактом заземления электроприбора разрывается. Установка становится беззащитной. Кроме того, свободная фаза без нагрузки может создать потенциал, равный входному напряжению на ближайшей подстанции. Как правило, это 600 вольт. Можно представить, какой ущерб будет нанесен включенному в этот момент электрооборудованию. При этом утечки тока на физическую землю нет, и защитный автомат не сработает.
Представьте, что в этот момент, вы одновременно коснетесь фазы (пробой на корпус электроустановки), и металлического предмета, имеющего физическую связь с грунтом (водопроводный кран или батарея отопления). Можно получить поражение электротоком при напряжении 600 вольт.
А теперь посмотрим, в чем разница между заземлением и занулением (на нашей схеме). При разрыве нулевой шины, просто пропадет питание на всех электроустановках в этой цепи. Поражения электротоком не будет, ни при каких обстоятельствах: электрическая цепь между физической землей и контактом заземления электроприборов не нарушена. Здоровье мы уже сохранили. Теперь посмотрим, что произойдет с электроустановками. Максимум ущерба — это перегоревшая лампа накаливания, ближайшая к вводному щитку. Причем неприятность произойдет лишь в случае повышения напряжения на фазном проводе. Сила тока возрастет (согласно закону Ома), сработает автомат защиты, и возможно, остальные электроприборы не пострадают.
Именно по этой причине, ПУЭ жестко предписывают: защитное заземление и зануление электроустановок должно быть организовано независимо друг от друга, с помощью разных линий.
Для справки: Обычно используется цветовая маркировка проводов:
- Фаза — коричневого или белого цвета.
- Рабочий ноль — синего цвета.
- Защитное заземление — желто-зеленая оболочка.
Если у вас жилье современной постройки, значит зануление и заземление выполнено согласно Правилам устройства электроустановок. Это легко проверить, взглянув на вводной кабель в щитке. Кроме того, вы сами можете проверить правильность подключения.
Типовые методики расчета
Для расчета защитного заземления потребуется заранее определиться со следующими исходными показателями:
- Размеры и общее число вбитых в грунт штырей из стали.
- Расстояние, оставляемое между ними (шаг установки).
- Глубина заложения прутьев.
- Удельное сопротивление самой почвы в месте обустройства ЗУ.
Помимо них важно учитывать геометрическую форму и материал заготовок, из которых сваривается система из заземлителей (либо это типовой стальной уголок, либо медная полоса и тому подобное). Согласно действующей нормативной документации (ПУЭ, в частности) минимальные размеры выбранных заготовок должны быть не менее:
Согласно действующей нормативной документации (ПУЭ, в частности) минимальные размеры выбранных заготовок должны быть не менее:
- полоса стальная с сечением не менее 100 мм2;
- стальной уголок со сторонами 4х4 мм;
- круглый стальной брусок сечением 16 мм2;
- металлическая труба диаметром 32 мм и толщиной стенки не менее 3,5 мм.
Минимальные размеры штырей или арматурных прутьев, используемых для изготовления системы ЗУ, выбирается из следующих соображений. Длина заготовок не может быть менее 1,5-2 метра. Расстояния между ними берется кратным длине каждого стержня. В зависимости от того, какая площадка выбирается для обустройства ЗУ, они устанавливаются либо в ряд один за другим, либо в виде квадрата или правильного треугольника. Согласно применяемой методике расчета основная его задача – определиться с числом стержней и параметрами соединяющей из полосы (ее длиной и толщиной).
Пример расчета элементов ЗУ
В качестве примера рассмотрим расчет сопротивления стеканию аварийного тока для вертикального стержня, взятого в единственном экземпляре (чертеж справа).
Чертеж вертикального заземлителя
Для его проведения потребуется знать следующие исходные данные:
ρ – удельное сопротивление грунта в этом месте (в Омах на·метр);
L – длина стержня в метрах;
d – его основной типоразмер (диаметр) в метрах;
Т – расстояние до середины прутка от поверхности в метрах.
Если учитывать величину, ограничивающую растекание тока для горизонтальных элементов ЗУ, то сопротивление для их вертикальных аналогов вычисляется по следующей формуле:
Формула расчета сопротивления растеканию тока для вертикальных заземлителей
В ситуации, когда заземляющее устройство обустраивается в неоднородном грунте (специалисты называют его двухслойным), удельное сопротивление рассчитывается так:
Формула расчета удельного сопротивления для неоднородного грунта
где – Ψ представляет собой сезонный коэффициент;
ρ1 и ρ2– удельные сопротивления различных слоев местного грунта (верхнего уровня и нижнего слоя соответственно), измеренные в Омах на·метр;
Н – толщина слоя, расположенного в верхней части грунта в метрах;
t – общее заглубление вертикальных элементов (глубина всей траншеи), равное примерно 0,7 метра.
Нужное число стержней (без учета горизонтальных компонентов) определяется следующим образом:
где Rн представляет собой нормируемое согласно ПТЭЭП сопротивление растеканию.
Если учитывать горизонтальные составляющие ЗУ, то формула для числа вертикальных штырей примет следующий вид:
где ηв – это коэффициент использования системы, указывающий на то, насколько сильно токи растекания от единичных элементов влияют друг на друга (при их различном расположении).
Именно поэтому при слишком близком их расположении общее сопротивление защитного контура существенно возрастает. Полученное после использование указанных формул число заземляющих элементов обычно округляется до большего значения. Расчет заземления по ним удается автоматизировать, если воспользоваться специально разработанной для этих целей программой «Электрик v.6.6». Скачать это ПО можно бесплатно на соответствующем сайте в Интернете.
Как действует зануление
Нередко возникает ситуация, когда человек может прикоснуться к корпусу прибора, где уже есть опасное напряжение, а защита еще не сработала. Для защиты от этого и существует зануление, которое превращает обычное замыкание на корпус в короткое замыкание, где задействован фазный и нулевой провод. Появление большого значения тока приводит к срабатыванию защитных устройств и автоматическому отключению поврежденной электроустановки от сети.
Такое фазное напряжение не представляет угрозы для жизни людей. Его величина будет значительно меньше, чем то напряжение, которое имеется в самом электропроводе. Это снижение выполняет зануление, принцип действия которого позволяет существенно снизить опасный уровень возникшего фазного напряжения.
Непосредственная защита осуществляется с помощью максимальных автоматов или плавких предохранителей, которые устанавливаются перед потребителями и защищают от коротких замыканий. На производстве существуют специальные отключающие приборы в виде магнитных пускателей, контакторов и различных автоматов.
Зануление и заземление электроустановок
Зануление в квартире
Заземление и зануление электроустановок
Что такое защитное зануление
Зануление вместо заземления можно ли использовать
Чем отличается заземление от зануления
Устройство защитных токовых отводов при работе с трехфазным электрическим оборудованием
Коммутация трехфазных потребителей электроэнергии отличается от подключения обычной бытовой электротехники, поэтому устройство защитных систем осуществляется иным способом. При этом не нужно путать нулевой или заземляющий провод, участвующий в системе управления, то есть, задействованный в схему пуска и остановки агрегата, с защитным проводником, предназначенным для отведения опасного разряда на землю.
Оформление, разводка, подключение электрооборудования
Работы производятся в несколько этапов:
- По периметру помещения обустраивается отдельная линия (трасса), выполненная из узкой металлической полосы 40х3 мм или медного провода сечением 16 мм.кв.
- На ней в скрытом месте монтируется шина (желательно медная) с контактными приспособлениями (шпильками или отверстиями для болтовых соединений). Допускается использование металлической шины, но в этом случае приваривание шпилек – обязательное условие.
- Эта линия соединяется с контуром заземления или зануления, выведенным отдельным проводом от распределительного щита и имеющим надежную связь с землей либо прямую, либо через рабочий ноль
- Корпуса всех потребителей (трехфазных электродвигателей) через медный провод соединяются с описанной шиной.
При возникновении короткого замыкания от утечки напряжения из-за нарушения изоляции или «пробития» одной из фаз на корпус заземленного электрооборудования, ток сразу будет уходить в землю по пути наименьшего сопротивления, то есть через соединенную с рабочим нулем или землей жилу. Это сохранит человека от поражения электротоком при касании корпуса прибора.
Устройство зануления допускается только в случае отсутствия возможности коммутации с земляным контуром. Во всех иных случаях правильным считается только защитное заземление.
Агрегат через медный провод соединен с шиной, смонтированной от заземляющей трассы
Обязательное использование дополнительных защитных устройств
Описанные заземляющие и зануляющие системы эффективны при возникновении значительных утечек или коротких замыканий на корпус электроприборов. Однако для достижения полной безопасности при обслуживании оборудования необходимо применение дополнительных средств защиты, обеспечивающих разрыв электрической цепи при возникновении нарушений их работы.
На производственных предприятиях это могут быть блоки автоматики (контроля изоляции БКИ или максимальной токовой защиты). Но наиболее распространенными средствами, как на производстве, так и в быту, являются автоматические выключатели и устройства защитного отключения, которые:
- обеспечат обесточивание электрической цепи в случае возникновения неполадок;
- защитят пользователя от поражения электрическим током;
- предохранят технику от возгорания.
Такие приборы могут иметь исполнение для однофазных или трехфазных систем. Они бывают:
- однополюсные – устанавливаются на одну из линий (ноль, фаза);
- двухполюсные – устанавливаются на оба провода электропроводки;
- многополюсные (три и более) – используются при трехфазном напряжении.
Схема бытовой проводки с РЕ-проводником заземления и защитой ВА и УЗО Автоматический выключатель производит отключение при превышении токовой нагрузки номинального значения, указанного на корпусе прибора. УЗО контролирует состояние электросети и срабатывает при появлении самых незначительных утечек тока.
Заземление в квартире
Самый надёжный способ защиты от поражения электрическим током в быту — заземление электроприборов. Ведь многие наши домашние помощники имеют металлические (читай – токопроводящие) корпуса, и в результате обрыва или повреждения изоляции может произойти касание фазного провода к корпусу прибора. И тогда касаться его становится смертельно опасно… Чтобы избежать беды, корпус прибора соединяют с землёй. Теперь при попадании фазы на корпус происходит короткое замыкание и срабатывает защита, отключающая подачу тока.
•
фаза;• ноль;• земля.
Заземление электроприборов происходит через третий контакт вилки и розетки. Сложнее ситуация в домах, где проводка смонтирована по двухпроводной схеме, и в розетках провод заземления отсутствует. В этом случае заземляющий провод придется проводить непосредственно от корпуса прибора.
Рекомендую: Вопрос: Можно ли использовать сваи свайно-винтового фундамента в качестве заземления?
Где взять «землю» в квартире многоэтажного дома? Ответ прост: в электрощите, установленном на каждом этаже.
Поясним на примере. У соседа короткое замыкание. Ток пройдёт следующий путь: фаза соседа – «ноль» соседа – этажный электрощит – Ваш провод заземления – корпус Вашего прибора!
Что лучше — заземление или зануление
Вопросом о том, что лучше — зануление или заземление, задаются чаще всего жильцы многоквартирных домов. Именно там нередко наблюдаются проблемы с подключением заземления, в виду его отсутствия. В таком случае, как выход из сложившейся ситуации, будет использование зануления.
При этом стоит понимать всю ответственность осуществления подобного рода работ. Дело в том, что для создания зануления необходимы определенные знания, для того чтобы произвести правильные расчеты по оптимальной точке подключения кабеля к нейтрали.
В случае с заземление, все гораздо проще. Конечно же, здесь также существуют свои расчеты по сопротивлению и различные другие нюансы. Однако сделать заземление в частном доме куда проще и безопаснее, чем в случае с занулением.
Заземление
А вот теперь основной вопрос, чем отличается заземление от зануления? Все дело в установке дополнительных защитных устройств. Чтобы добиться безопасной эксплуатации бытовых электрических приборов, в распределительный щит необходимо вмонтировать или УЗО (устройство защитного отключения), или дифференцированные автоматические выключатели. Оба вида устройств имеют в своей конструкции специальный рабочий орган, который выравнивает силу тока в фазном и нулевом проводе.
Схема подключения заземления
- Если сеть и бытовые приборы работают в штатном режиме, то токи в разных контурах одинаковы по величине, но протекают в разных направлениях: по фазе в квартиру, по нулю из нее. То есть, вся система сбалансирована, поэтому бытовые приборы работают хорошо по номинальным параметрам.
- Если в любом месте электрической системы произошел разрыв изоляции (провода, бытовые приборы, автоматы и так далее), ток начинает движение к земле. При этом этот ток проходит мимо проводника нуля. То есть, заземление перестает действовать. В рабочем органе УЗО или дифференцированного автомата происходит нарушение баланса. Как только нарушение начинается, сразу же срабатывает защитное устройство, которое разъединяет контакты. Электричество в систему перестает подаваться.
И еще один момент, который касается защитного заземления и зануления. Специалисты рекомендуют устанавливать отдельный контур, в который монтируется так называемый РЕ-проводник. Его специально выводят за пределы распределительного щита и устанавливают около розетки в гнезде. При этом розетка должна быть трехфазной: фаза, ноль и земля. Проводник соединяется с «землей».
Обратите внимание, что вилка от бытового прибора при включении в розетку сначала касается «земли», а затем двух основных фаз. То же самое происходит и в момент выключения: сначала выводятся фазы, затем в последнюю очередь земля. Это гарантия, что в случае короткого замыкания в самом бытовом электрическом приборе не произойдет сбой всей системы за счет повышенного действия силы тока в ней
Это гарантия, что в случае короткого замыкания в самом бытовом электрическом приборе не произойдет сбой всей системы за счет повышенного действия силы тока в ней.
Обычно УЗО устанавливается в распределительном щитке после основного вводного автомата. Необходимо учитывать тот момент, что устройство защитного отключения не защищает электрическую сеть от короткого замыкания проводов. Вероятность, что это устройство само выйдет из строя по этой причине, очень велика
Поэтому так важно скорректировать параметры вводного автомата с параметрами самого УЗО. Оптимальный же вариант – установить перед устройством еще один автомат, который по параметрам будет идентичен защите. Кстати, необходимо отметить, что УЗО с автоматом для него – это, по сути, обычный дифференциальный автомат
Последний стоит дороже защитного устройства, но по размерам намного компактнее
Кстати, необходимо отметить, что УЗО с автоматом для него – это, по сути, обычный дифференциальный автомат. Последний стоит дороже защитного устройства, но по размерам намного компактнее.
Теперь вы можете понять, в чем отличия заземления и зануления.
Как сделать заземление в частном доме своими руками 220В
Разобравшись, для чего это необходимо, вы без сомнений приметесь за обустройство системы заземления. В первую очередь это защита от замыканий и поражения электрическим током. Кроме того, рекомендуется изготовить своими руками громоотвод в частном доме, чтобы обеспечить дополнительную защиту во время грозы.
В зависимости от напряжения, которое подается в сети, можно сделать заземление в частном доме своими руками 380 В или 220 В. Согласно требованиям, установка такой системы должна проводиться параллельно со строительством, однако нередко приходится сталкивать с ее отсутствием в домах. На этот случай рассмотрим, как сделать правильное заземление в частном доме.
Обратите внимание! Существует два понятия в электрике: заземление и зануление. В чем разница? Второй вариант используют только на предприятиях, и поскольку он менее безопасен – для жилых домов его не применяют
Зануление
Зануление — соединение металлических нетоковедущих частей электрического прибора или устройства с нулевым проводом (нейтралью) питающей трёхфазной электрической сети. Применяется для защиты от поражения током при замыкании фазы на эти металлические нетоковедущие части.
Принцип действия основан на возникновении короткого замыкания при пробое фазы на вышеупомянутую часть прибора или устройства, что приводит к срабатыванию системы защиты (автоматического выключателя или перегоранию плавких предохранителей).
Практическое применение
Зануление — основная мера защиты при косвенном прикосновении в электроустановках до 1 кВ с глухозаземленной нейтралью. Поскольку нейтраль заземлена, зануление можно рассматривать как специфическую разновидность заземления.
Принцип работы зануления
При пробое фазной цепи электроприбора на зануленный корпус фактически происходит короткое замыкание «фаза-ноль». Сила тока в цепи при этом увеличивается до очень больших величин, что вызывает быстрое срабатывание аппаратов защиты (автоматические выключатели, плавкие предохранители), которые быстро отключают линию, в которую включен неисправный прибор. Кроме того, если в этой линии установлено УЗО, то оно так же срабатывает, но не от большой величины силы тока, а потому, что сила тока в фазном проводе становится неравна силе тока в нулевом рабочем проводе, так как бо́льшая часть тока имеет место в цепи защитного зануления мимо УЗО. Если на этой линии установлены и УЗО и АВ, то сработают либо они оба, либо что-то одно, в зависимости от их быстродействия и величины тока замыкания. ПУЭ регламентируют время автоматического отключения поврежденной линии. Для сети 220/380В оно не должно превышать 0,4 с. Зануление осуществляется по определенным правилам, специально предназначенными для этого проводниками. При однофазной проводке — это, например, третья жила провода или кабеля.
Схема зануления сети с глухозаземленной нейтралью
- Болт присоединения заземления или зануления
- Защитный аппарат
- Светильник
- Однофазный электроприемник
- Выключатель
- Повторное заземление
Иногда ошибочно считают, что заземление на отдельный контур, не связанный с нулевым проводом сети лучше, потому что при этом нет сопротивления длинного PEN-проводника от электроустановки потребителя до заземлителя КТП. Такое мнение ошибочно, потому что сопротивление заземления, особенно кустарного, гораздо больше сопротивления даже длинного провода. И при замыкании фазы на заземленный таким образом корпус электроприбора ток замыкания из-за большого сопротивления местного заземления может оказаться недостаточным для срабатывания АВ или предохранителя, защищающего эту линию. В таком случае корпус прибора будет находиться под опасным потенциалом. Кроме того, даже если применить АВ небольшого номинала, срабатывающий от тока замыкания на землю, все равно обеспечить требуемое ПУЭ время автоматического отключения поврежденной линии практически нереально. Поэтому раньше, до начала массового применения УЗО, заземление корпусов электроприемников без их зануления (то есть заземление по системе ТТ) вообще не допускалось.
ПУЭ-6, 1.7.39. В электроустановках до 1 кВ с глухозаземленной нейтралью или глухозаземленным выводом источника однофазного тока, а также с глухозаземленной средней точкой в трехпроводных сетях постоянного тока должно быть выполнено зануление. Применение в таких электроустановках заземления корпусов электроприемников без их зануления не допускается.
Теперь, согласно ПУЭ-7, заземление корпусов электроприемников без их зануления допускается, но только при обязательном применении УЗО.
Требования, контроль, проверка
При обустройстве и эксплуатации систем заземления организации контроля их состояния уделяется повышенной внимание. Перед проведением этих мероприятий в первую очередь необходимо ознакомиться с содержанием терминов, используемых для описания процедур
Под «проверкой» понимается визуальное обследование систем заземления на соответствие следующим требованиям:
- надежность контактов в местах сочленения элементов ЗУ;
- отсутствие следов разрушения на открытых частях конструкций и подводящих медных шин;
- состояние защитной окраски, которую рекомендуется регулярно обновлять, а также наличие маркировки на подводящих проводниках.
Под словом «контроль» понимают периодические испытания заземляющих контуров с целью выявления соответствия их сопротивлений стеканию тока установленным ПУЭ нормам. Согласно требованиям этого документа оно не должно превышать нескольких единиц Ома.
Согласно требованиям ПУЭ действующие ЗУ должны проверяться не реже чем один раз в полгода (визуальный осмотр). Та же процедура, сопровождающаяся выборочным вскрытием земляного покрова в подозрительных местах, проводится не реже одного раза за 12 лет. При организации контроля исправности и надежности функционирования систем ЗУ также исходят из рекомендаций ПУЭ, определяющих какие напряжения не требуется применять при проверке сопротивления контура, а какие – можно.
Кроме того, типовые методики проводимых периодически контрольных обследований предполагают обязательное измерение сопротивления электрического контура, называемого «петлей фаза-нуль». Эта искусственно создаваемая система формируется путем замыкания отдельно взятого фазного провода на металлический корпус подключенной к действующей сети электроустановки.
По сути, такая петля образуется между фазной шиной и заземленным нулем, что и стало поводом для присвоения ей такого названия. Знание этого параметра позволяет точнее контролировать цепи заземления с целью обеспечения требуемой эффективности защиты (стекания аварийного тока в грунт). От величины сопротивления этого контура зависит безопасность обслуживающего персонала и работающих с бытовыми приборами людей.
Особенности и принцип действия зануления
Назначение зануления — метод защитного устройства позволяет провести подключение корпусов оборудования и других деталей из металлов с нейтралью (нулевой защитный проводник). В условиях с заземленным защитным проводником и напряжением в сети не более 1000 В, используется схема зануления.
При пробое фазного тока на корпусе электроприборов и оборудовании происходит КЗ фазы. При этом, срабатывают автоматы защитного отключения тока и цепь размыкается. Этим и отличаются две защитные системы.
К приборам зануления относят:
- плавкий предохранитель;
- автомат отключения тока;
- встроенные в пускатели, тепловые реле;
- контактор с тепловой защитой.
Возникла ситуация пробоя фазного напряжения. При этом от корпуса электроустановки ток проходит по нейтрали на обмотку трансформатора. Затем, от него по фазе — на предохранитель. Плавкие предохранители сгорают от пиковых значений тока, в электрическую цепь прекращается подача напряжения.
При этом, ноль беспрепятственно проводит ток, позволяя сработать защите. Его прокладывают в безопасном месте, запрещается оснащать его дополнительными выключателями и другими устройствами.
Значение уровня проводимости провода фазы должно быть наполовину больше нулевого проводника. Как правило, в этом случае используют стальные пластины, оболочки кабеля и другие материалы.
Зануляющие проводники проверяют на исправность при сдаче работ по подключению и проводке электроэнергии в здании, а также, через определенное количество времени, при пользовании электрической схемой.
Не менее одного раза в период 5 — летнего срока, производятся замеры значений сопротивления всей цепи фазного и нулевого проводника на корпусах самого дальнего оборудования от щита электропроводки, а также самого мощного оборудования в помещении.
Защитное зануление, в некоторых случаях, может выполнять работу защитного отключения. При этом, отличаются эти 2-е защитных системы тем, что в случае защитного отключения цепи, его можно использовать в любых условиях, при различных режимах заземляющего проводника, показателей напряжения цепи. В таких сетях можно обойтись и без провода нулевого подключения.
Расчет зануления необходимо производить с учетом всех условий работы и принципа его действия.
Защитное отключение выполняют с использованием защитной системы, которая отключает электрооборудование автоматически. При возникновении аварийных ситуаций и угроз поражения и нанесения электротравм человеку, к таким ситуациям можно отнести:
- короткое замыкание фазного провода на корпус;
- повреждение изоляции электрической проводки;
- неисправности на заземляющем контуре;
- нарушения целостности зануляющих проводников.
Эта защитная система нередко используется при невозможности провести защитные системы заземления и зануления. Но на ответственных участках, возможна установка защитного отключения и как дополнительный контур защиты человека и оборудования от поражения токами утечки и короткого замыкания.
При этом, их подразделяют, в зависимости от величины тока на входе и изменений реакции защитных устройств, на несколько схем:
- наличия напряжения на корпусе оборудования;
- силу тока при замыкании на провод земли;
- напряжения или силу тока в нулевом проводнике;
- уровня напряжения на фазе относительно значения на проводе земли;
- устройства для постоянного или переменного тока;
- устройства комбинированные.
В заключение разберем вопрос, который может задать начинающий электрик.
Что надёжнее
Сравнивая заземление и зануление по надежности и ответить на вопрос что лучше, необходимо исходить из их назначения, а также из следующих соображений:
- Эффективность каждого из этих видов защиты зависит от конкретных условий их применения.
- В соответствии с требованиями ПУЭ зануление применяется лишь в тех случаях, когда нет возможности сделать качественное заземление (этим они и отличаются, по сути).
- Поскольку скорость срабатывания включенного в фазную цепь автомата или предохранителя не очень высока – зануление считается менее надежным, чем мгновенно срабатывающее УЗО или работающее постоянно заземление.
Еще одним существенным отличием заземления от зануления, заметно снижающим надежность последнего, является зависимость аварийного тока от точки пробоя изоляции на корпус устройства. Если это случается, например в самом начале обмотки электродвигателя, то ток в цепи будет максимальным и защита сработает чётко.
Схема работы системы зануления при пробое изоляции (рисунок слева). Схема поражения человека электрическим током без системы зануления и заземления (рисунок справа)
В случае, когда пробой изоляции окажется ближе к нулевому рабочему проводнику – разность напряжений между точкой замыкания и проводом PEN окажется равной нулю. Вследствие этого оно может не сработать совсем. Именно поэтому защитное зануление используется чаще всего как вынужденная мера, к которой прибегают в отсутствии возможности обустроить надежное заземление (в многоквартирных домах старой застройки, например).
При рассмотрении вопроса о том, как сделать защиту в частном доме, последний решается намного проще. В данном случае все условия для обустройства полноценного заземления электроустановок и электроприборов налицо, защитный контур можно сделать под окном в огороде, например. Последующие действия сводятся к простому соединению ЗК посредством толстого медного проводника с главной заземляющей шиной вводного щитка.
В заключение отметим, что заземление и зануление – это различные подходы к одному и тому же техническому решению, обеспечивающему надежную защиту человека от поражения электрическим током. Выбор того, что лучше, зависит от целого ряда причин, определяемых условиями эксплуатации защищаемого оборудования, а также от преследуемых целей.
Предлагаем Вам ознакомиться с видео о том, чем отличается заземление от зануления.
Заземление
Начнем с разбора каждой системы по отдельности.
Так, заземление – это преднамеренное соединение электрической сети, прибора или оборудования со специальной конструкцией, закопанной в землю посредством нулевого проводника.
По сути, это единая система, соединяющая между собой токопроводящие элементы приборов и оборудования (к примеру, их корпусы), подсоединенные к ним провода, и штыри, закопанные в землю (контур).
Благодаря высокому сопротивлению контура при касании фазного провода на корпус в случае пробоя, большая часть напряжения уходит в землю, и хоть потенциал все же будет оставаться на корпусе, но его значение будет значительно сниженным и неопасным для человека.
Международный стандарт, разработанный МЭК, включает в себя несколько систем заземления, различия между которыми сводится к разным видам заземления источника питания (генератора или трансформаторной подстанции), и заземления открытых участков сети, приборов.
В стандарт входит три системы – TN, TT и IT.
Первая буква индекса указывает на тип заземления источника (T – «земля), получается, что в первых двух системах трансформаторная подстанция подключается к заземляющему контуру.
Что касается третьей (IT), то у нее источник питания заизолирован, либо же подключен к прибору, обеспечивающему высокое сопротивление (I – изоляция).
Вторая буква индекса указывает на тип заземления открытых участков сети. В системе TN (N — нейтраль) эти участки соединены с нейтральным проводником источника, подключенного к заземляющему контуру (глухое заземление нейтрали).
Для соединения оборудования и приборов используются рабочий (N) и защитный (PE) нулевые проводники.
Что касается двух других систем – TT и IT, то второй буквенный индекс указывает на то, что открытые участки сети, оборудование и приборы заземляются своим отдельным контуром.
Как правильно скручивать провода
В свою очередь система TN делится на подсистемы, их три – TN-C, TN-S, TN-C-S.
Различия между ними сводятся к использованию разных защитных проводников, которыми потребители соединяются с нейтралью источника.
В подсистеме TN-C используется объединенный проводник (PEN), совмещающий в себе и рабочий, и защитный «нуль». Эта подсистема является уже устаревшей, поэтому при укладке новых электросетей она не используется.
Подсистема TN-S отличается тем, что у нее рабочий и защитный «нули» — это разные проводники. То есть, к нейтрали подключается N-проводник, а к заземляющему контуру – PE-проводник, хоть они совмещены на источнике питания.
Третья подсистема – TN-C-S является промежуточным звеном между первыми двумя подсистемами. У нее от нейтрали отходит PEN-проводник, то есть нулевые проводники объединены, но на определенном участке сети они разделяются и к потребителям подходит отдельно рабочий и защитный «нули». После разделения защитный «нуль» дополнительно заземляется.
Более подробно о системах заземления, их достоинствах и недостатках можно почитать здесь https://elektrikexpert.ru/sistemy-zazemlenij.html.
Требования, выдвигаемые заземлению достаточно серьезные. Ведь оно должно обеспечить отвод опасного напряжения с прибора или оборудования в случае пробоя.
Заземление в обязательном порядке делается для сетей, в которых напряжение выше 42 В переменного тока или 110 В – постоянного тока.
Поэтому при проектировании должны правильно подбираться части сети и оборудования, которые подлежат обязательному заземлению, осуществляться контроль за тем, чтобы заземляющая цепь нигде не прерывалась.
Серьезно подходят и к выбору проводников, их сечение должно обеспечивать соответствующую пропускную способность.
Все требования, которые выдвигаются системам заземления прописаны в ПУЭ (Правила устройства электроустановок).
Здесь можно подробнее узнать, как сделать заземление в частном доме.
В чем разница между занулением и заземлением
Схема зануления с указанием расщепления на N и РЕ на клеммнике щитка
Удобнее всего рассматривать отличие заземления от зануления на примере подключения бытовых электроприборов. Современные дома оборудованы трехпроводной электропроводкой, где проводник РЕ является заземляющим и не зависит от проводника рабочего нуля N. Таким образом, корпус электроприбора, соединенный с РЕ-проводником, получает надежную связь с землей – заземление.
Старые постройки имеют двухпроводное электроснабжение, состоящее из проводника L – фазы, N – рабочего нуля. N выводится от заземляющей шины в общедомовом или подъездном электрощите. Изначально он называется PEN-проводником и может быть расщеплен на N и РЕ.